
Math 249 Lecture 26 Notes

Daniel Raban

October 23, 2017

1 The Lagrange Inversion Formula

We want to find the compositional inverse of a formal power series. To get there, we need
a fact about trees.

1.1 Another Cayley tree theorem

Recall from last time that we had Cayley’s formula, which said that tn = nn−1 is the
number of trees on n vertices.

Theorem 1.1 (Cayley). Given a labeled tree T on n vertices, let cT (i) be the number of
children of node i in T . Then∑

T

∏
i

x
cT (i)
i = (x1 + · · ·+ xn)n−1.

Before we provide the proof, let’s look a few examples to see this in action. This really
is a remarkable fact.

Example 1.1. Let n = 2.

1
x11x

0
2

2

2
x01x

1
2

1

We get x11x
0
2 and x01x

1
2, so x1 + x2 = (x1 + x2)

1.
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Example 1.2. Let n = 3.

1
x1x2

2

3

2
x1x2

1

3

1
x21

23

We get 2x1x2 + 2x2x3 + 2x1x3 + x21 + x22 + x33 = (x1 + x2 + x3)
2.

Proof. We proceed by induction on n. Define the generating function

Tn(x1, . . . , xn) =
∑
T

∏
i

x
cT (i)
i .

This is a homogeneous polynomial of degree n− 1, and so is (x1 + · · ·+ xn)n−1. It is also
symmetric in the xi. Since it is homogeneous of degree n − 1, every term omits at least
one variable; again, so does (x1 + · · ·+ xn)n−1.

As a result of these observations, it is sufficient to show that

Tn(x1, . . . , xn)|xi=0 = (x1 + · · ·+ xn)n−1|xi=0 ∀i.

By symmetry, we can just do the xn = 0 case. Then Tn(x1, . . . , xn−1, 0) just enumerates
the trees in which xn is a leaf. What happens when you add the vertex n as a leaf? The
number of children of a vertex increases by 1, and we can do this for any of the vertices
1, . . . , n− 1. So we get

Tn(x1, . . . , xn−1, 0) = (x1 + · · ·+ xn−1)Tn−1(x1, . . . , xn−1),

and applying the inductive hypothesis concludes the proof.

Corollary 1.1. The number of rooted trees on vertices {1, . . . , n} with cT (i) = ki for all i
(for given ki) is the multinomial coefficient

(
n−1

k1,k2,...,kn

)
.

Proof. This is the coefficient of xk11 · · ·xknn in (x1 + · · ·+ xn)n−1.

1.2 Lagrange inversion

Let T (x; , a0, a1, . . . ) be a mixed generating function for species of rootes trees, weighted
by
∏

v∈S aCT (v). That is,
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T (x; , a0, a1, . . . ) =

∞∑
n=1

∑
k1+···+kn=n−1

(
n− 1

k1, k2, . . . , kn

)
ak1 · · · akn

xn

n!

=

∞∑
n=1

∑
k1+···+kn=n−1

ak1
k1!
· · · akn

kn!

xn

n
.

If we let A(x) = a0 + a1x + a2
x2

2! + · · · =
∑∞

k=0 ak
xk

k! , then the coefficient

〈xn〉T (x; a0, a1, . . . ) =
1

n

〈
xn−1

〉
A(x)n.

Think of A(x) as the mixed generating function for E with structure on |S| = k weighted
by ak. This is a sort of “generic species.”

Recall that T ∼= X(E ◦ T ), which gives us that T (x) = xeT (x). Last time, we saw that
this gave that T (x) =

∑∞
n=1 n

n−1 xn

n! . If you weight the children of a vertex, you get that

T (x; a0, a1, . . . ) = xA(T (x; a0, a1, . . . )).

Solving this equation makes sense for any formal power series A(x). Assume that
a−10 exists so A(x)−1, the multiplicative inverse of A(x), makes sense. This means that
T/A(T ) = x, which gives us that

(x/A(x)) ◦ T = x.

In general, given G(x) with G(0) = 0, we can say G(x) = x/A(x), where A(x) =
x/G(x), which makes sense because G(x)/x is a formal power series and has a multiplicative
inverse.

Theorem 1.2 (Lagrange inversion). If G(x) = x/A(x), with G(0) = 0 and a−10 exists,
then

〈xn〉G〈−1〉(x) =
1

n

〈
xn−1

〉
A(x)n.

Example 1.3. T (x) = xeT (x), so T (x)e−T (x) = x. Then

T (x) = G(x)〈−1〉,

where G(x) = xe−x and A(x) = ex. So

〈xn〉T (x) =
1

n

〈
xn−1

〉
enx =

1

n

nn−1

(n− 1)!
=

1

n!
nn−1.

The left hand side is tn/n!, so tn = nn−1.
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Example 1.4. Let Tp be the species of rooted plane trees.

Tp = X(L ◦ Tp)

So Tp(x) = G(x)〈−1〉, where G(x) = x(1− x); this makes A(x) = 1
1−x . So

1

n!
tp(n) = 〈xn〉Tp(x) =

1

n

〈
xn−1

〉
(1− x)−n =

1

n

〈
n

n− 1

〉
=

1

n

(
2n− 2

n− 1

)
.

These are the Catalan numbers, shifted over by 1. So the number of unlabeled plane trees
on n vertices is Cn−1.
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